3.5.76 \(\int \frac {(a^2+2 a b \sqrt [3]{x}+b^2 x^{2/3})^p}{x} \, dx\) [476]

Optimal. Leaf size=69 \[ -\frac {3 \left (1+\frac {b \sqrt [3]{x}}{a}\right ) \left (a^2+2 a b \sqrt [3]{x}+b^2 x^{2/3}\right )^p \, _2F_1\left (1,1+2 p;2 (1+p);1+\frac {b \sqrt [3]{x}}{a}\right )}{1+2 p} \]

[Out]

-3*(1+b*x^(1/3)/a)*(a^2+2*a*b*x^(1/3)+b^2*x^(2/3))^p*hypergeom([1, 1+2*p],[2+2*p],1+b*x^(1/3)/a)/(1+2*p)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {1370, 272, 67} \begin {gather*} -\frac {3 \left (\frac {b \sqrt [3]{x}}{a}+1\right ) \left (a^2+2 a b \sqrt [3]{x}+b^2 x^{2/3}\right )^p \, _2F_1\left (1,2 p+1;2 (p+1);\frac {\sqrt [3]{x} b}{a}+1\right )}{2 p+1} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a^2 + 2*a*b*x^(1/3) + b^2*x^(2/3))^p/x,x]

[Out]

(-3*(1 + (b*x^(1/3))/a)*(a^2 + 2*a*b*x^(1/3) + b^2*x^(2/3))^p*Hypergeometric2F1[1, 1 + 2*p, 2*(1 + p), 1 + (b*
x^(1/3))/a])/(1 + 2*p)

Rule 67

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))
*Hypergeometric2F1[-m, n + 1, n + 2, 1 + d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Intege
rQ[m] || GtQ[-d/(b*c), 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1370

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a
+ b*x^n + c*x^(2*n))^FracPart[p]/(1 + 2*c*(x^n/b))^(2*FracPart[p])), Int[(d*x)^m*(1 + 2*c*(x^n/b))^(2*p), x],
x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {\left (a^2+2 a b \sqrt [3]{x}+b^2 x^{2/3}\right )^p}{x} \, dx &=\left (\left (1+\frac {b \sqrt [3]{x}}{a}\right )^{-2 p} \left (a^2+2 a b \sqrt [3]{x}+b^2 x^{2/3}\right )^p\right ) \int \frac {\left (1+\frac {b \sqrt [3]{x}}{a}\right )^{2 p}}{x} \, dx\\ &=\left (3 \left (1+\frac {b \sqrt [3]{x}}{a}\right )^{-2 p} \left (a^2+2 a b \sqrt [3]{x}+b^2 x^{2/3}\right )^p\right ) \text {Subst}\left (\int \frac {\left (1+\frac {b x}{a}\right )^{2 p}}{x} \, dx,x,\sqrt [3]{x}\right )\\ &=-\frac {3 \left (1+\frac {b \sqrt [3]{x}}{a}\right ) \left (a^2+2 a b \sqrt [3]{x}+b^2 x^{2/3}\right )^p \, _2F_1\left (1,1+2 p;2 (1+p);1+\frac {b \sqrt [3]{x}}{a}\right )}{1+2 p}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 58, normalized size = 0.84 \begin {gather*} -\frac {3 \left (a+b \sqrt [3]{x}\right ) \left (\left (a+b \sqrt [3]{x}\right )^2\right )^p \, _2F_1\left (1,1+2 p;2+2 p;1+\frac {b \sqrt [3]{x}}{a}\right )}{a (1+2 p)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a^2 + 2*a*b*x^(1/3) + b^2*x^(2/3))^p/x,x]

[Out]

(-3*(a + b*x^(1/3))*((a + b*x^(1/3))^2)^p*Hypergeometric2F1[1, 1 + 2*p, 2 + 2*p, 1 + (b*x^(1/3))/a])/(a*(1 + 2
*p))

________________________________________________________________________________________

Maple [F]
time = 0.00, size = 0, normalized size = 0.00 \[\int \frac {\left (a^{2}+2 a b \,x^{\frac {1}{3}}+b^{2} x^{\frac {2}{3}}\right )^{p}}{x}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2+2*a*b*x^(1/3)+b^2*x^(2/3))^p/x,x)

[Out]

int((a^2+2*a*b*x^(1/3)+b^2*x^(2/3))^p/x,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2+2*a*b*x^(1/3)+b^2*x^(2/3))^p/x,x, algorithm="maxima")

[Out]

integrate((b^2*x^(2/3) + 2*a*b*x^(1/3) + a^2)^p/x, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2+2*a*b*x^(1/3)+b^2*x^(2/3))^p/x,x, algorithm="fricas")

[Out]

integral((b^2*x^(2/3) + 2*a*b*x^(1/3) + a^2)^p/x, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (\left (a + b \sqrt [3]{x}\right )^{2}\right )^{p}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a**2+2*a*b*x**(1/3)+b**2*x**(2/3))**p/x,x)

[Out]

Integral(((a + b*x**(1/3))**2)**p/x, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2+2*a*b*x^(1/3)+b^2*x^(2/3))^p/x,x, algorithm="giac")

[Out]

integrate((b^2*x^(2/3) + 2*a*b*x^(1/3) + a^2)^p/x, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a^2+b^2\,x^{2/3}+2\,a\,b\,x^{1/3}\right )}^p}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2 + b^2*x^(2/3) + 2*a*b*x^(1/3))^p/x,x)

[Out]

int((a^2 + b^2*x^(2/3) + 2*a*b*x^(1/3))^p/x, x)

________________________________________________________________________________________